

Gembloux Agro-Bio Tech Université de Liège

Cartiaux, N., Mazzocchi, G., Marino, D. (2017)

Improving urban metabolism through agriculture: an approach to ecosystem services qualitative assessment in Rome.

Colloque international: Agricultures urbaines durables: vecteur pour la transition écologique Session 4: Circular economy, urban metabolism, eco engineering 8 June 2017 – Jean Jaures University, Toulouse

First: let's review some concepts

Urban metabolism

Ecosystem Services

"Urban metabolism is the study of material and energy flows a r i s i n g f r o m u r b a n socioeconomic activities and regional and gloabl biochemical processes. The characterization of these flows and the r e l a t i o n s h i p s b e t w e e n anthropogenic urban activity and ntural processes and cycles defines the behavior of urban production and consumption."

(Fernandez et al, 2017)

Ecosystem services can be defined as benefits that humans get from ecosystem functions

Millennium Ecosystem Assessment (2003)

including direct or indirect contributions to human well being

The Economics of Ecosystems and Biodiversity (2010)

Urban agriculture

"An industry located within (intra-urban) or on the fringe (peri-urban) of a town, a city or a metropolis, which grows and raises, processes and distributes a diversity of food and nonfood products, (re-) using largely human and material resources, products and services found in and around that urban area, and in turn supplying human and material resources, products and services largely to that urban area."

Mougeot (2000)

Summary

PRIMARY QUESTION

What is the state of the urban and peri urban agriculture in Rome and its relationship with land use changes (1960 to 2012).

SECONDARY QUESTION

What is the contribution of peri urban multifunctionnal farms in terms of ecosystem services?

Case study of the young farmers in Rome.

Introduction: World's situation

Today half the world-population lives in urban areas and by 2030 nearly 60% is expected to live in cities and towns (Ash et al., 2008)

Cities claim ecosystem support (including waste absorption) that sometimes is 500–1000 times larger than their own area (Folke et al., 1997)

Urban development often occurs in biodiversity-rich areas with cities tending to emerge in areas with high ecosystem productivity (Ljungqvist et al., 2010)

1 Let's start with an overview of Rome

64%

Of Rome is protected

39%

Of the farms are in protected areas

1600

Vascular plants – high biodiversity

37.073 ha Of Ager Romanus

Figure 1.3 Capotorti et al, 2015

Agro Romano

The Ager Romanus (literally, "the field of Rome"') is the geographical rural area extending around the city of Rome, which differs from the Roman countryside as being contained inside the municipal area.

- Cultural and historical lands
- Strong iconographical representations
- Some farms can date back to the medieval times (Blasi et al., 2008)

-31%

Of the used agricultural areas between 1954-2001

+300% Of urban fabric in 60 years

48% Agricultural matrix

Figure 1.2 Frondini et al, 2011

Agriculture with seminatural patterns

Coastal resources are managed for biodiversity, storm surge protection and aquaculture. aesthetic and recreational benefits, crops. are managed for biodiversity, flood control, wildlife and pollinator movement, urban heat island control,

Upland forest provides water harvesting, food control, wildlife conservation, carbon sequestration, scenery & recreation, and timber & non-timber products, landscapes.

Low density urban

Peri-urban landscape corridors with multiscale and mixed crop/livestock operations.

High density urban

Farmers markets, retail & whole-sale markets, food hubs and community gardens in the urban core enable access to fresh, locally produced food resources. The typology confined within the area of the Rome Municipality's comport 5 categories of urban agriculture: residential gardens, shared gardens, farms, institutional gardens, informal gardens

The results indicate that most of the cultivated plots tend to be concentrated in the peripheral areas where the urban fabric is more dispersed and where the presence of available free lands allows the cultivation.

Figure: Lupia, 2016

Ecosystem services contribution

Study of peri urban multifunctional farm in Rome

2012: Societal demands and activism from cooperative, farmer's group.

- Low job opportunities and high youth unemployment
- The fact that the Municipality held lands from diverse compensating plans (1993–2008)
- Demand from the citizens

2014: The decree "Terre Vive" (living lands) adopted in 2014 has allowed 5510 hectares of land for agricultural use to be sold or leased to new farmers of less than 40 years of age (*Ministero delle politiche agricole, alimentari e forestali, 2014*).

2014: Two programs have been launched, one directly from the Municipality "*Roma, citta da Coltivare: terre pubbliche ai giovani e agli agricoltori*" (Rome cultivating the city: public lands for the young and the farmers" and the other from the Lazio Region "*Terre ai giovani*" (Lands for youth)

Societal inclusion, organic, multifunctional Win><Win

>40 years Aimed directly at youth

± 200€

Of rent by hectares loaned

15 years Of rent !

150 hectares

Of pilot farms

View on the "Casale"

Location

Pic-nic area creation

Seminar

Pictures retrieved from the facebook of the "Cooperativa Agricola Coraggio", check it out !

💭 – Ecosystem services assessment

We have to better understand what really does contribute to sustainable human well-being, and recognize the substantial contributions of natural and social capital

Although the value of economic goods and services are reliably established by markets, the value of many goods and services provided by nature are not captured by the market and remains unclear

Researchers and practitioners have recently begun to recognize that agricultural ecosystems can be managed to maintain or even improve the provision of ecosystem services

Policy makers need the support of objective valuations if ecological assets have to be incorporated in the design of land-use strategies that already comprise the consideration of economic and social variables

Provisioning services

Various products, job employment

Social services

Health, well-being, education, tourism

Regulating services

Water management, carbon sequestration, disaster prevention, soil management, efficiency of natural resources

Support services

Conservation benefits, low carbon transport and energy

Categories of	Green	Urban agriculture quantitative project	Quantifiable benefits	Current	Envisioned
Ecosystem	Infrastructure	input		importance	importance
services	provision				
Provisioning	Multifunctional,	A biological farm with cultivation of cereals	Production surface (ha) and yield (t), number of	XX	XXX
services	resilient agriculture and	and vegetables at the local level; side products	plants, biological label, common "Young		
	forestry	such as honey, processed products such as	Roman farmer" label		
		bread or biscuits and other non-food benefits			
		described below; resiliency supported by a			
		low amount of food system nodes and links			
	Investment and	Agricultural employment and/or voluntary	Number of employment (+1) farm and persons	0	XXX
	employment	work, general land management and	involved in the project as volunteer or as part of		
		economical regeneration	the cooperative.		
Societal	Tourism and recreation	Enhancement of the traditional Roman	General approbation and support from the	XX	XXX
services		agricultural landscape character, local quality	neighborhood and agri-tourists, branded Roman		
		products and food labeling, natural reserve	products		
		and park entrance "door", diverse events,			
	Education	Farms as a teaching, research and	Conferences, seminars and workshop organized	x	XXX
		environmental education labs available for	by the cooperative (2015-2016), a large food		
		school pupils, students and adults.	event with more than 500 persons, participation		
			in the GLAMUR project.		
	Health and well-being	Development of publicly accessible urban	Activities and manual work available for	0	XX
		gardens for inhabitants and visitors with	interested people, number of users and general		
		payment of fees (entrance, events,	feedback of the users of the natural parks		
		accommodation, etc.), facilities such as			
		electricity and water. Pathways and usable			
		green spaces			
Regulating	Enhanced efficiency of	Biological practice with no use of	Yield of bio food, soil, water and crop samples	XX	XXX
services	natural resources	phytosanitary products, reclamation and	and general tenure of the lands.		
		improvement of the lands.			

	[Climate	change	Innovative practices at farm sites such as	Stormwater and sewage cost reduction,	0	XX
		mitigation	and	green stormwater retention elements,	microclimate and temperature measurements		
		adaptation		windbreaks, hedgerows, etc.	and observations		
		Water managem	ent	Stormwater collection and utilization for crop	Amount of water saved thanks to reuse	х	XX
				watering			
		Land and	soil	Land consolidation, ploughing techniques,	Reduced surface water run-off and deprived	0	XX
		management		enhancement of the local landscape character	land at risk		
		Disaster prevent	ion	Local food resiliency in case of extreme	Amount of food supplied locally in extreme	х	XX
				events causing food shortage	situations		
Habitat	or	Conservation be	nefits	Uses of old species related to the Ager	Cultural and natural biodiversity observations	х	XX
supporting				Romanus agro biodiversity, protection of			
sarvices				unfarmed green areas within the farmland			
services				(grasslands and woodlands)			
		Low-carbon tr	ansport	Short food supply chain, on-site consumption,	Market and distribution point at kilometer zero	XX	XXX
		and energy		low amount of food system nodes and links,	or use of distribution point nearby the farm area,		
				producing and using green energy	distribution aimed at the neighborhood		

Legend

0	Not existing or not significant
Х	Weak
XX	Medium
XXX	Important

Negative

- Slow start, mainly due to the numerous "everyday" problems and the reclaiming of the lands
- Lack of support from the authorities
- Lack of facilities
- Lack of communication between the institutions
- Lack of funding
- Some projects failed

Positive

- The offer is smaller than the demand
- The users and consumers are particularly happy
- Contributed to the awareness and visibility
- Social aspects are particularly relevant

Those programs play the role as a first experience for state investment directly aimed at the development multifunctional urban farms as well as to youth employment and could definitely be seen as a model for further development of similar initiatives it also shows an interesting approach of local governments who are trying to rebuild their food systems through innovative public policy.

Any questions ?

You can find me at

• @nicolas_cartiaux

👂 cartiaux.nico@hotmail.fr

Cartiaux, N (2017) Urban agriculture as productive green infrastructure for regenerating urban landscape: youth innovation in Rome (Master's thesis), Gembloux Agro-Bio Tech Press

Cavallo A., Di Donato B., Marino D. (2016). *Mapping and assessing urban agriculture in Rome*. Agriculture and Agricultural Science Procedia 8 (2016) 774 – 783

Grando S., A. Pietromarchi, P. Desideri and L. Colombo (2016) 'Local' level analysis of FNS pathways in Italy: The case of land access in the metropolitan area of Rome. TRANSMANGO: EU KBBE.2013.2.5-01 Grant agreement no: 613532

Pulighe G., Lupia F. (2016). Mapping spatial patterns of urban agriculture in Rome (*Italy*) usingGoogle Earth and web-mapping services. Land Use Policy 59(2016) 49–58