

Agriculture Urbaine et Economie Circulaire: Des perspectives pour la filière du végétal en France

Guillaume MOREL-CHEVILLET, Chargé de mission agriculture urbaine d'ASTREDHOR

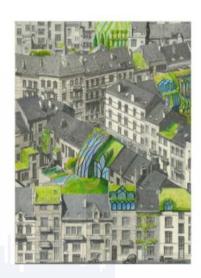
INSTITUT TECHNIQUE AGRICOLE SUR VÉGÉTAL SPÉCIALISÉ: HORTICULTURE

10 STATIONS D'EXPÉRIMENTATION À L'ÉCHELLE NATIONALE

+100 SALARIÉS DONT 70 INGÉNIEURS / TECHNICIENS

+ 2000 ADHÉRENTS (PRODUCTEURS, PAYSAGISTES, DISTRIBUTEURS, ETC.)

L'INSTITUT TECHNIQUE AU SERVICE DE LA FILIÈRE DU VÉGÉTAL



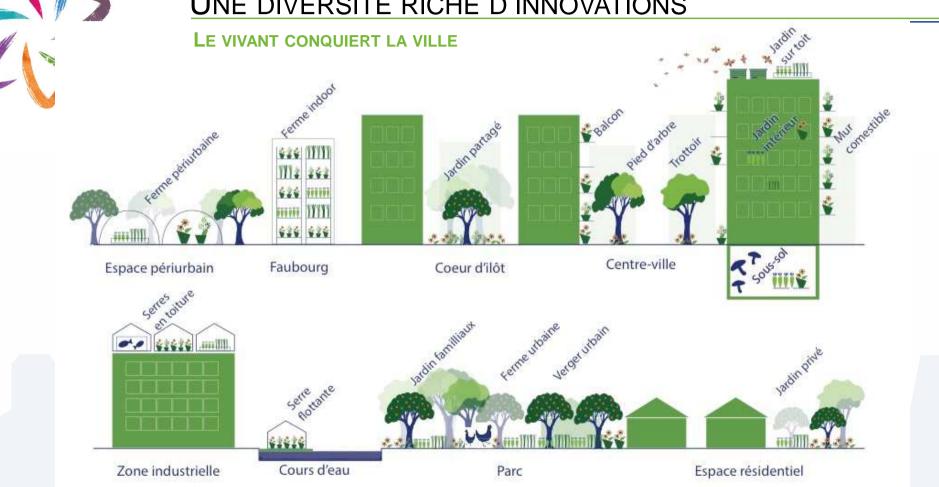
ENJEUX POUR L'INSTITUT

VERS DES VILLES PLUS VIVANTES!

AUTREFOIS... ... L'AVENIR!

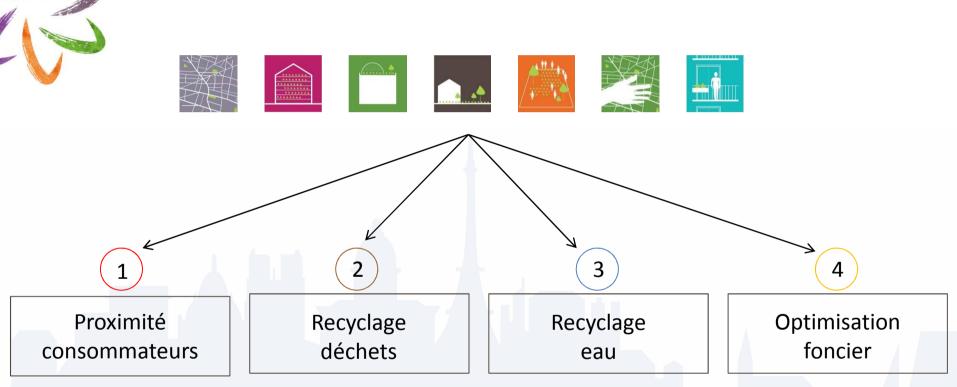
LA MISSION AGRICULTURE URBAINE

ANALYSE DE PROJETS DANS L'HÉMISPHÈRE NORD

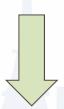


Amérique du Nord

Europe


Asie

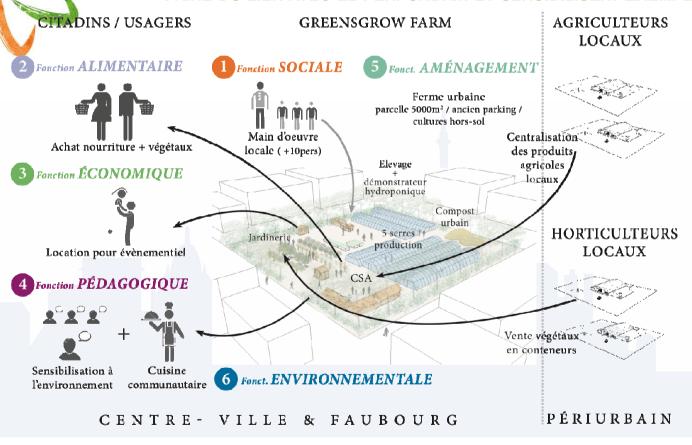
L'ÉCONOMIE CIRCULAIRE, AU CŒUR DES PROJETS D'A.U.


« ...système économique d'échange et de production qui, à tous les stades du cycle de vie des produits (biens et services), vise à augmenter l'efficacité de l'utilisation des ressources, diminuer l'impact environnemental et développer le bien-être des individus.»

(1) PROXIMITÉ PRODUCTEURS - CONSOMMATEURS

LIMITATION DES IMPACTS ENVIRONNEMENTAUX & SENSIBILISATION À LA CONSOMMATION LOCALE

- Transport, stockage et commercialisation des denrées alimentaires = 11% des GES dans la chaîne alimentaire.
- ✓ Mode de production = 29% des GES dans la chaîne alimentaire.


Agriculteurs urbains capables de réduire les transports

Offrir une prise de conscience environnementale

Source: Ifen, 2006. D'après Citepa (format Secten), Ademe, ministère chargé de l'Industrie (DGEMP), ministère chargé des Transports (DAEI), ministère chargé de l'Agriculture (Scees), Insee.

1) PROXIMITÉ PRODUCTEURS - CONSOMMATEURS

FAIRE DU LIEN AVEC LE PÉRI-URBAIN ET SENSIBILISER: EXEMPLE GREENSGROWFARM

1 PROXIMITÉ PRODUCTEURS - CONSOMMATEURS

DES PERSPECTIVES POUR LA FILIÈRE

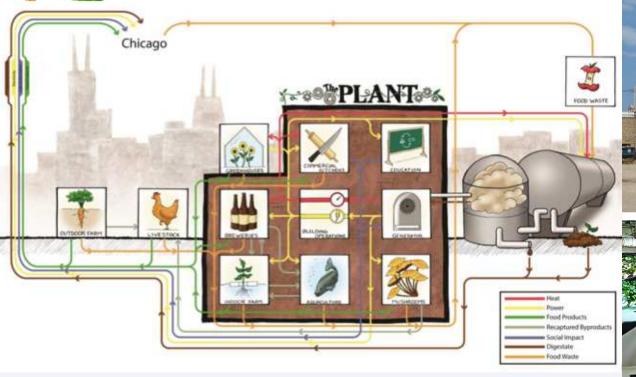
Imaginer de nouveaux modes de commercialisation & de distribution

- > moins impactant pour l'environnement
- > marketing adapté, vente directe, « hub » urbain
- Démonstration du savoir-faire de production
 - sensibiliser à conso. locale
- Répondre à de nouvelles demandes urbaines
 - améliorer le bien-être:
 - Produits locaux sains et frais
 - Cours/ formation dans l'espace de production
 - Evènements festifs & culturels

² RECYCLAGE DES DÉCHETS ORGANIQUES

QUAND LE DÉCHET DEVIENT RESSOURCE

- Production de déchets organiques en France = 46,4 millions de tonnes.
 - dont 7,1 millions déchets cuisine collective
 - ✓ et 5,1 millions déchets domestiques.


Agriculteurs urbains capables de traiter et assimiler ces déchets

ADEME, 2015. Déchets: Chiffres-clés. Edition 2015 [en ligne]. http://www.ademe.fr/dechets-chiffrescles (consulté le 30 août 2016).

UN MÉTHANISEUR COMME PILIER: THE PLANT À CHICAGO

A L'ÉCHELLE INDIVIDUELLE ET COLLECTIVE; ESSOR DES COMPOSTEURS

CASDAR TECHN'AU: R&D DE SOLUTIONS INNOVANTES POUR LEVER CERTAINS VERROUS TECHNOLOGIQUES ET GARANTIR LA QUALITÉ DES PRODUITS DE L'AU.

De 2017 à 2019

Chef de file: ASTREDHOR

3 volets / 3 problématiques:

1/ Accès à la lumière naturelle: fibre optique

- 2/ Utilisation de déchets organiques d'origine urbaine
- 3/ Perception sociétale: attractivité pour consommateurs, intégration paysagère, etc.
- Questionnement transversal: contamination et qualité sanitaire

CASDAR TECHN'AU: UTILISATION DE DÉCHETS ORGANIQUES D'ORIGINE URBAINE

- Evaluation de matériaux issus d'économies urbaines
 - Basée sur expérimentations AgroParisTech (T4P)
 - ✓ Modalités testées en 2017:

	Compost déchets verts	Broyat de bois	Marc de café mycorhyzé	Terreau enraciné	<u>Drêches</u> de brasserie	Carton	Compost biodéchets	Granit concassé
			0	2				CH!
M1						7		
M2								
МЗ								

- Témoin: Substrat horticole utilisé par professionnels
- ✓ Végétaux testés: tomates miniatures et coriandre, fraises en juillet

² RECYCLAGE DES DÉCHETS ORGANIQUES

CASDAR TECHN'AU: UTILISATION DE DÉCHETS ORGANIQUES D'ORIGINE URBAINE

Evaluation de matériaux issus d'économies urbaines

- Variables mesurées:
 - évolution physico-chimique des substrats (NPK, MO, hauteur, rétention, etc.)
 - données agronomiques: rendements, vitesse de production

CASDAR TECHN'AU: UTILISATION DE DÉCHETS ORGANIQUES D'ORIGINE URBAINE

- Evaluation de la possibilité d'intégrer des fertilisations organiques en hydroponie (bioponie)
 - Basé sur travaux R&D AGRICOOL
 - Modalités testées en 2017: Bioponie à base d'engrais organiques commerciaux (difficultés dû à l'indoor + recirculée + aéroponie)
 - Essais sur différents bioréacteurs (pierre-ponce, pouzzolane, etc.)
 - 3 modules indoor 1,80m X 1,80m (phytotrons)
 - Objectif 2018: Trouver/tester des sources urbaines (thé de compost, jus de fermentation type bokashi, etc.)
 - Variables mesurées:
 - évolution physico-chimique des solutions hydroponiques (NPK, MO, etc.)
 - données agronomiques: rendements, vitesse de production

RECYCLAGE DE L'EAU

3 RECYCLAGE DE L'EAU

PROJET DE RECHERCHE APIVA (CASDAR)

Porté par l'ITAVI, Partenaires: INRA, CIRAD, ASTREDHOR, EPLEFPA Lozère

Objectifs:

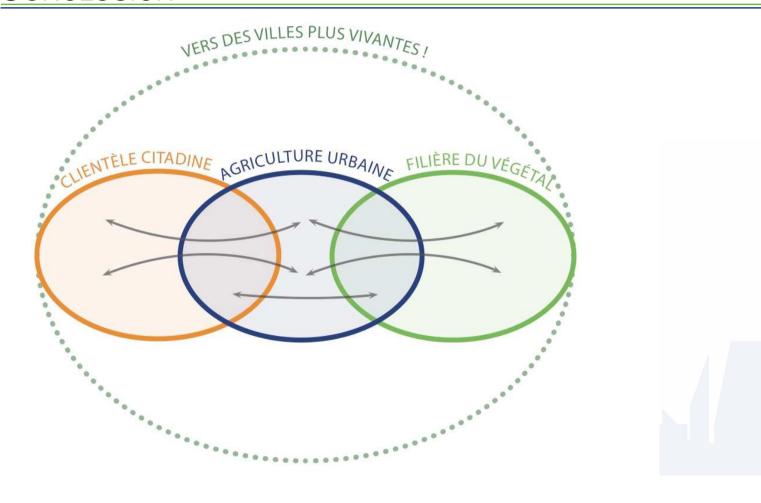
- Développer et caractériser des pilotes aquaponiques fonctionnels
- Décrire/optimiser leur fonctionnement
- Etablir des éléments technico-économiques
- Optimisation des rendements
- Réduction des intrants (fertilisants)
- Limitation de la consommation en eau
- Nouvelles pistes de diversification et de différenciation

https://projetapiva.wordpress.com

OPTIMISATION DU FONCIER

MICROFERMES

COLLECTIFS / PARTICULIERS



- Horticulture adaptée à cette contrainte: hors-sol, productions noncomestibles, nombreux emplois/Ha, etc..
- Etude à venir sur leur localisation // ville (impact sur outil de production, gammes, commercialisation, etc.)

CONCLUSION

